# Hassan M. Badawi - Wolfgang Förner <br> Normal coordinate analyses of 3,5-dichlorophenylcyanamide 

Received: 4 October 2003 / Accepted: 4 December 2003 / Published online: 16 March 2004
© Springer-Verlag 2004


#### Abstract

The structure of 3,5-dichlorophenylcyanamide c-C $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-\mathrm{NHCN}$ was investigated by DFT-B3LYP and ab initio MP2 calculations with the $6-311+\mathrm{G}^{* *}$ basis set. The planar to perpendicular rotational barrier was calculated to be of about $5 \mathrm{kcal} \mathrm{mol}^{-1}$ at both levels of calculation. The stability of the planar structure of the molecule was explained on the basis of conjugation effects between the cyanamide-NHCN moiety and the phenyl $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{5}$ ring in agreement with earlier NMR results. The CNC and the HNC bond angles were calculated to be about $120^{\circ}$ especially by MP2 calculation, which is consistent with $s p^{2}$ (planar $-\mathrm{NH}-\mathrm{CN}$ group) and not $s p^{3}$ (pyramidal $-\mathrm{NH}-\mathrm{CN}$ group) structure. The vibrational frequencies of the $d_{0}, d_{1}$ and $d_{3}$ species of 3,5 dichlorophenylcyanamide and the potential energy distributions among symmetry coordinates of the normal modes of the parent molecule were computed at the DFT-B3LYP level. The calculated infrared and Raman spectra of the molecule were plotted. Complete vibrational assignments were made on the basis of isotopic substitution and normal coordinate calculations.


Keywords Vibrational spectra and assignments . Rotational barrier • 3,5-Dichlorophenylcyanamide

## Introduction

The interesting electronic structure of cyanamide $\mathrm{H}_{2} \mathrm{~N}-$ $\mathrm{C} \equiv \mathrm{N}$ and its chemical importance have attracted attention over the years. [1, 2, 3, 4, 5] The molecule was reported to have a large amplitude inversion motion caused by a double-minimum potential and the equilibrium configuration is pyramidal where the potential barrier corresponds to a planar configuration. [1, 3] Brown et al.

[^0]determined the barrier height as $510 \mathrm{~cm}^{-1}$ ( 1.45 kcal $\mathrm{mol}^{-1}$ ). [2]

Recently, vinyl cyanamide $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{NHCN}$ was predicted to adopt a planar configuration with the cis and the trans conformations being the equilibrium minima for the molecule. The cis to trans rotational barrier was predicted to be of about $6 \mathrm{kcal} \mathrm{mol}^{-1}$. [6] Furthermore, the CNC and the HNC bond angles were calculated to be of about $120^{\circ}$ by both levels of calculations, which is clearly consistent with $s p^{2}$ (planar -NH-CN group) and not $s p^{3}$ (pyramidal -$\mathrm{NH}-\mathrm{CN}$ group) bonding and hence with a planar configuration of vinyl cyanamide.

The planar structure of the cyanamide -NHCN moiety in vinyl cyanamide [6] could be best explained on the basis of the following resonance structures:


The conjugation between the vinyl $\mathrm{CH}_{2}=\mathrm{CH}-$ and the cyanamide - NHCN groups leads to significant $\pi$ character of the $\mathrm{C}-\mathrm{N}$ bond [6] that explains the predicted high rotational barrier ( $6 \mathrm{kcal} \mathrm{mol}^{-1}$ ) for the molecule in a very similar way to vinyl ketene $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHCO}$ ( 6 kcal $\mathrm{mol}^{-1}$ ). [7]

In the present study, we investigated the structure of 3,5-dichlorophenylcyanamide $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-\mathrm{NHCN}$ by DFT-B3LYP and ab initio MP2 calculations. The energies of the molecule in its possible structures were optimized at the DFT-B3LYP/6-311+G** and MP2/6-311+G** levels. The vibrational frequencies were computed at the DFT-B3LYP/6-311+G** level. Then we carried out normal coordinate analyses and calculated the potential energy distributions (PEDs) among symmetry coordinates for the molecule. The vibrational assignments of the normal modes were provided on the basis of the calculated PED values and the results are presented herein.

## Ab initio calculations

The Gaussian 98 program, [8] running on an IBM RS/ 600043 P model 260 workstation, was used to carry out


Fig. 1 Atom numbering for 3,5-dichlorophenylcyanamide in the planar form

DFT-B3LYP and ab initio MP2 calculations. The 6$311+\mathrm{G}^{* *}$ basis set was employed to optimize the structures and predict the energies and dipole moments of 3,5dichlorophenylcyanamide $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-\mathrm{NHCN}$ in the planar (Fig. 1) and perpendicular structures. The optimized energies and structural parameters of the molecule in the stable planar conformation at both levels of calculation are shown in Tables 1 and 2, respectively.

Asymmetric torsional potential function
The potential scan for the internal rotation about the $\mathrm{C}-\mathrm{N}$ single bond in 3,5-dichlorophenylcyanamide was obtained by allowing the CCNC dihedral angles $(\varphi)$ to vary from $0^{\circ}$ (planar position) to $90^{\circ}$ (perpendicular position). Full geometry optimizations at each of the fixed dihedral angles $(\varphi)$ of $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and $90^{\circ}$ were carried out at DFT-B3LYP/6-311+G** and MP2/6-311+ $\mathrm{G}^{* *}$ levels of calculation. The calculated potential functional scans at the two levels in 3,5-dichlorophenylcyanamide are shown in Fig. 2.

Table 1 Calculated structural parameters ( $\AA$ and degrees), total dipole moment (Debye), and rotational constants of the planar 3,5dichlorophenylcyanamide

| Parameter | B3LYP/6-311+G** | MP2/6-311+G** |
| :---: | :---: | :---: |
| $r\left(\mathrm{C}_{1}-\mathrm{C}_{2}=\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ | 1.388 | 1.393 |
| $r\left(\mathrm{C}_{2}-\mathrm{C}_{4}=\mathrm{C}_{3}-\mathrm{C}_{5}\right)$ | 1.389 | 1.396 |
| $r\left(\mathrm{C}_{6}-\mathrm{C}_{4}=\mathrm{C}_{6}-\mathrm{C}_{5}\right)$ | 1.400 | 1.405 |
| $r\left(\mathrm{C}_{1}-\mathrm{N}_{7}\right)$ | 1.411 | 1.407 |
| $r\left(\mathrm{~N}_{7}-\mathrm{C}_{13}\right)$ | 1.332 | 1.339 |
| $r\left(\mathrm{C}_{13} \equiv \mathrm{~N}_{14}\right)$ | 1.159 | 1.179 |
| $r\left(\mathrm{~N}_{7}-\mathrm{H}_{15}\right)$ | 1.010 | 1.001 |
| $r\left(\mathrm{C}_{2}-\mathrm{H}_{8}\right)$ | 1.083 | 1.087 |
| $r\left(\mathrm{C}_{3}-\mathrm{H}_{9}\right)$ | 1.084 | 1.087 |
| $r\left(\mathrm{C}_{4}-\mathrm{Cl}_{10}\right)$ | 1.746 | 1.727 |
| $r\left(\mathrm{C}_{5}-\mathrm{Cl}_{11}\right)$ | 1.748 | 1.729 |
| $r\left(\mathrm{C}_{6}-\mathrm{H}_{12}\right)$ | 1.081 | 1.085 |
| Bond angle |  |  |
| $\left(\mathrm{C}_{3} \mathrm{C}_{1} \mathrm{C}_{2}\right)$ | 120.1 | 120.3 |
| $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{4}=\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{C}_{5}\right)$ | 120.0 | 119.8 |
| $\left(\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{6}=\mathrm{C}_{3} \mathrm{C}_{5} \mathrm{C}_{6}\right)$ | 120.8 | 120.7 |
| $\left(\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{5}\right)$ | 118.4 | 118.6 |
| $\left(\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7}\right)$ | 121.1 | 120.7 |
| $\left(\mathrm{C}_{3} \mathrm{C}_{1} \mathrm{~N}_{7}\right)$ | 118.8 | 119.0 |
| $\left(\mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{C}_{13}\right)$ | 124.2 | 122.6 |
| $\left(\mathrm{N}_{7} \mathrm{C}_{13} \mathrm{~N}_{14}\right)$ | 179.5 | 178.5 |
| $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{H}_{8}\right)$ | 120.3 | 120.4 |
| $\left(\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{H}_{9}\right)$ | 120.6 | 120.7 |
| $\left(\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{Cl}_{10}\right)$ | 119.7 | 119.5 |
| $\left(\mathrm{C}_{3} \mathrm{C}_{5} \mathrm{Cl}_{11}\right)$ | 119.6 | 119.5 |
| $\left(\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{12}\right)$ | 120.8 | 120.7 |
| $\left(\mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{H}_{15}\right)$ | 118.3 | 119.2 |
| $\left(\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{C}_{13}\right)$ | 0.0 | 0.0 |
| $\left(\mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{C}_{1} \mathrm{C}_{13}\right)$ | 180.0 | 180.0 |
| Dipole moment ( $\mu_{\mathrm{t}}$ ) | 3.50 | 3.76 |
| Rotational constants |  |  |
| A | 918 | 930 |
| B | 578 | 580 |
| C | 354 | 357 |

Vibrational frequencies and normal coordinate analyses
The optimized structural parameters were used to compute the vibrational frequencies of $\mathrm{d}_{0}, \mathrm{~d}_{1}$, and $\mathrm{d}_{3}$ species of 3,5-dichlorophenylcyanamide at the DFT-B3LYP/6$311+\mathrm{G}^{* *}$ level. 3,5-Dichlorophenylcyanamide in the planar conformation has $\mathrm{C}_{\mathrm{s}}$ symmetry. In the planar molecule, the 39 vibrational modes span the irreducible representations: $27 \mathrm{~A}^{\prime}$ and 12 A ". The A' modes should be polarized and the A" modes depolarized in the Raman spectra of the liquid. Normal coordinate analyses were carried out for the stable planar structure of the molecule as described previously. $[9,10]$ The internal and symmetry coordinates of the molecule are listed in Tables 3 and

Table 2 Computed total energies (hartree) and relative energies ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) for the possible structures of 3,5-dichlorophenylcyanamide

| Structure | B3LYP/6-311+G** |  |  | MP2/6-311+G** |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\varphi)^{\text {a }}\left({ }^{\circ}\right)$ | Total energy | Relative energy | $(\varphi)\left({ }^{\circ}\right.$ | Total energy | Relative energy |
| Planar | 0.0 | -1299.179861 | 0.0 | 0.0 | -1296.952025 | 0.0 |
| Perpendicular | 90.0 | -1299.171696 | 5.1 | 90.0 | -1296.944356 | 4.8 |

[^1]

Fig. 2 Potential curves for the internal rotation in 3,5dichlorophenylcyanamide as determined by DFT-B3LYP/6$311+\mathrm{G}^{* *}$ (solid) and MP2/6-311+G** (dotted) calculations
4. The PEDs for each normal mode among the symmetry coordinates of the molecule were calculated and are given in Table 5. A complete assignment of the fundamentals was proposed based on the calculated PED values, infrared band intensities, Raman line activities, and depolarization ratios. The data of the vibrational assignments are listed in Tables 5 and 6.

The vibrational infrared and Raman spectra were calculated using the computational methods previously described. [10, 11] To calculate the Raman spectra, the frequencies $v_{j}$, the scattering activities $S_{j}$, and the depolarization ratios $\rho_{j}$ were obtained from DFT-B3LYP/6$311+\mathrm{G}^{* *}$ calculation. The calculated vibrational infrared and Raman spectra of the molecule are shown in Figs. 3 and 4.

## Discussion

The chemistry of phenylcyanamide and its derivatives has attracted attention due to the active role of their ligands in inorganic chemistry. $[12,13,14,15,16,17,18,19,20$, 21] On the basis of ${ }^{15} \mathrm{~N}$ NMR chemical shifts of phenylcyanamide and the shielding changes of the amino nitrogen $-\mathrm{N}-\mathrm{C}$ (relative to ammonia $\mathrm{NH}_{3}$ ) and the cyano nitrogen $-\mathrm{C} \equiv \mathrm{N}$ (relative to methyl cyanide $\mathrm{CH}_{3} \mathrm{CN}$ ), a substantial build-up of positive charge at the amino N atom was suggested. [12] This build-up is a result of significant $\pi$-character in the aryl- N bond that arises from the contribution of two resonance structures. [12] The aromatic substituent effect on the ${ }^{15} \mathrm{~N}$ resonance of $3,5-$ dichlorophenylcynamide was reported to be minor and less than 4 ppm relative to phenylcyanamide. [12]

From energy optimization at DFT-B3LYP and ab initio MP2 levels (Fig. 2) an energy difference of about $5 \mathrm{kcal} \mathrm{mol}^{-1}$ was predicted between the planar and the perpendicular structures of 3,5-dichlorophenylcyanamide. Similar to vinylcyanamide, [12] the CNC and the HNC bond angles were calculated to be of about $120^{\circ}$, especially at the MP2 level, which supports the $s p^{2}$ (planar -$\mathrm{NH}-\mathrm{CN}$ group) and not $s p^{3}$ (pyramidal -NH-CN group) bonding in 3,5-dichlorophenylcyanamides (Table 1). Furthermore, the increase in the $\mathrm{C}-\mathrm{N}$ barrier in going from 3,5-dichlorophenylcyanamide ( $5 \mathrm{kcal} \mathrm{mol}^{-1}$ ) to vinyl-

Table 3 Internal coordinate definitions ${ }^{\text {a }}$ for 3,5 -dichlorophenylcyanamide

| No. | Coordinate | Definition |  | No. | Coordinate | Definitio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{C}_{1}-\mathrm{C}_{3}$ | Stretch | $\mathrm{R}_{1}$ | 32 | $\mathrm{N}_{7} \mathrm{C}_{1} \mathrm{C}_{2}$ | Bend | $\beta_{1}$ |
| 2 | $\mathrm{C}_{1}-\mathrm{C}_{2}$ | Stretch | $\mathrm{R}_{2}$ | 33 | $\mathrm{N}_{7} \mathrm{C}_{1} \mathrm{C}_{3}$ | BEND | $\beta_{2}$ |
| 3 | $\mathrm{C}_{2}-\mathrm{C}_{4}$ | Stretch | $\mathrm{R}_{3}$ | 34 | $\mathrm{C}_{13} \mathrm{~N}_{7} \mathrm{C}_{1}$ | Bend | $\gamma$ |
| 4 | $\mathrm{C}_{4}-\mathrm{C}_{6}$ | Stretch | $\mathrm{R}_{4}$ | 35 | $\mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{C}_{1}$ | Bend | $\delta_{1}$ |
| 5 | $\mathrm{C}_{5}-\mathrm{C}_{6}$ | Stretch | $\mathrm{R}_{5}$ | 36 | $\mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{C}_{13}$ | Bend | $\delta_{2}$ |
| 6 | $\mathrm{C}_{3}-\mathrm{C}_{5}$ | Stretch | $\mathrm{R}_{6}$ | 37 | $\mathrm{N}_{14} \mathrm{C}_{13} \mathrm{~N}_{7}$ | Bend | $\sigma$ |
| 7 | $\mathrm{C}_{1}-\mathrm{N}_{7}$ | Stretch | A | 38 | $\mathrm{H}_{8} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7}+\mathrm{H}_{9} \mathrm{C}_{3} \mathrm{C}_{1} \mathrm{~N}_{7}$ | Torsion | $\lambda_{1}$ |
| 8 | $\mathrm{C}_{2}-\mathrm{H}_{8}$ | Stretch | $\mathrm{r}_{3}$ | 39 | $\mathrm{H}_{8} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7}-\mathrm{H}_{9} \mathrm{C}_{3} \mathrm{C}_{1} \mathrm{~N}_{7}$ | Torsion | $\lambda_{2}$ |
| 9 | $\mathrm{C}_{4}-\mathrm{Cl}_{10}$ | Stretch | $\mathrm{r}_{5}$ | 40 | $\mathrm{Cl}_{10} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{Cl}_{11} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{H}_{12}$ | Torsion | $\lambda_{3}$ |
| 10 | $\mathrm{C}_{6}-\mathrm{H}_{12}$ | Stretch | $\mathrm{r}_{7}$ | 41 | $\mathrm{Cl}_{10} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{Cl}_{11} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{H}_{12}$ | Torsion | $\lambda_{4}$ |
| 11 | $\mathrm{C}_{5}-\mathrm{Cl}_{11}$ | Stretch | $\mathrm{r}_{9}$ | 42 | $\mathrm{H}_{12} \mathrm{C}_{6} \mathrm{C}_{4} \mathrm{C}_{5}$ | Wag | $\eta_{1}$ |
| 12 | $\mathrm{C}_{3}-\mathrm{H}_{9}$ | Stretch | $\mathrm{r}_{11}$ | 43 | $\mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{C}_{1} \mathrm{C}_{13}$ | Wag | $\varpi$ |
| 13 | $\mathrm{N}_{7}-\mathrm{C}_{13}$ | Stretch | B | 44 | $\mathrm{N}_{7} \mathrm{C}_{1} \mathrm{C}_{3} \mathrm{C}_{2}$ | Wag | $\eta_{2}$ |
| 14 | $\mathrm{C}_{13}-\mathrm{N}_{14}$ | Stretch | C | 45 | $\mathrm{N}_{14} \mathrm{C}_{13} \mathrm{~N}_{7} \mathrm{C}_{1}$ | Torsion | $\chi$ |
| 15 | $\mathrm{N}_{7}-\mathrm{H}_{15}$ | Stretch | D | 46 | $\left(\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{C}_{13}, \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{~N}_{14}\right.$, | Torsion | $\tau$ |
| 16 | $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$ | Bend | $\alpha_{1}$ |  | $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~N}_{7} \mathrm{H}_{15}$ ) |  |  |
| 17 | $\mathrm{C}_{4} \mathrm{C}_{2} \mathrm{C}_{1}$ | Bend | $\alpha_{2}$ |  |  |  |  |
| 18 | $\mathrm{C}_{6} \mathrm{C}_{4} \mathrm{C}_{2}$ | Bend | $\alpha_{3}$ | 47 | $\mathrm{C}_{3} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{4}$ | Torsion | $\kappa_{1}$ |
| 19 | $\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{4}$ | Bend | $\alpha_{4}$ | 48 | $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{6}$ | Torsion | $\kappa_{2}$ |
| 20 | $\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{3}$ | Bend | $\alpha_{5}$ | 49 | $\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{5}$ | Torsion | $\kappa_{3}$ |
| 21 | $\mathrm{C}_{5} \mathrm{C}_{3} \mathrm{C}_{1}$ | Bend | $\alpha_{6}$ | 50 | $\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{3}$ | Torsion | $\kappa_{4}$ |
| 22 | $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{H}_{8}$ | Bend | $v_{1}$ | 51 | $\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{3} \mathrm{C}_{1}$ | Torsion | $\kappa_{5}$ |
| 23 | $\mathrm{C}_{4} \mathrm{C}_{2} \mathrm{H}_{8}$ | Bend | $v_{2}$ | 52 | $\mathrm{C}_{5} \mathrm{C}_{3} \mathrm{C}_{1} \mathrm{C}_{2}$ | Torsion | $\kappa_{6}$ |
| 24 | $\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{H}_{9}$ | Bend | $\nu_{3}$ |  |  |  |  |
| 25 | $\mathrm{C}_{5} \mathrm{C}_{3} \mathrm{H}_{9}$ | Bend | $v_{4}$ |  |  |  |  |
| 26 | $\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{Cl}_{10}$ | Bend | $v_{5}$ |  |  |  |  |
| 27 | $\mathrm{C}_{6} \mathrm{C}_{4} \mathrm{Cl}_{10}$ | Bend | $v_{6}$ |  |  |  |  |
| 28 | $\mathrm{C}_{3} \mathrm{C}_{5} \mathrm{Cl}_{11}$ | Bend | $v_{7}$ |  |  |  |  |
| 29 | $\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{Cl}_{11}$ | Bend | $v_{8}$ |  |  |  |  |
| 30 | $\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{12}$ | Bend | $v_{9}$ |  |  |  |  |
| 31 | $\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{H}_{12}$ | Bend | $v_{10}$ |  |  |  |  |

[^2]Table 4 Symmetry coordinates for 3,5-dichlorophenylcyanamide

| Species | Description | Symmetry coordinate ${ }^{\text {a,b }}$ |
| :---: | :---: | :---: |
| $\mathrm{A}^{\prime}$ | $\beta$-CH antisymmetric stretch | $\mathrm{S}_{1}=\mathrm{r}_{3}-\mathrm{r}_{11}$ |
|  | $\beta$-CH symmetric stretch | $\mathrm{S}_{2}=\mathrm{r}_{3}+\mathrm{r}_{11}$ |
|  | $\gamma-\mathrm{CCl}$ antisymmetric stretch | $\mathrm{S}_{3}=\mathrm{r}_{5}-\mathrm{r}_{9}$ |
|  | $\gamma$-CCl symmetric stretch | $\mathrm{S}_{4}=\mathrm{r}_{5}+\mathrm{r}_{9}$ |
|  | $\delta$-CH stretch | $\mathrm{S}_{5}=\mathrm{r}_{7}$ |
|  | $\mathrm{N}-\mathrm{H}$ stretch | $\mathrm{S}_{6}=\mathrm{D}$ |
|  | Ring-N stretch | $\mathrm{S}_{7}=\mathrm{A}$ |
|  | NCN antisymmetric stretch | $\mathrm{S}_{8}=\mathrm{B}-\mathrm{C}$ |
|  | NCN symmetric stretch | $\mathrm{S}_{9}=\mathrm{B}+\mathrm{C}$ |
|  | $\beta$-CH bend (in-plane) | $\mathrm{S}_{10}=v_{1}-v_{2}+v_{3}-v_{4}$ |
|  | $\beta$-CH bend (in-plane) | $\mathrm{S}_{11}=v_{1}-v_{2}-v_{3}+v_{4}$ |
|  | $\gamma-\mathrm{CCl}$ bend (in-plane) | $\mathrm{S}_{12}=v_{5}-v_{6}+v_{7}-v_{8}$ |
|  | $\gamma-\mathrm{CCl}$ bend (in-plane) | $\mathrm{S}_{13}=v_{5}-v_{6}-v_{7}+v_{8}$ |
|  | $\delta$-CH bend (in-plane) | $\mathrm{S}_{14}=v_{9}-v_{10}$ |
|  | $\mathrm{N}-\mathrm{H}$ bend (in-plane) | $\mathrm{S}_{15}=\delta_{1}-\delta_{2}$ |
|  | NCN bend (in-plane) | $\mathrm{S}_{16}=\sigma$ |
|  | Ring-NCN bend (in-plane) | $\mathrm{S}_{17}=\beta_{1}-\beta_{2}$ |
|  | CNC bend (in-plane) | $\mathrm{S}_{18}=\gamma$ |
|  | Ring breathing | $\mathrm{S}_{19}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{R}_{6}$ |
|  | Ring deformation | $\mathrm{S}_{20}=\mathrm{R}_{1}+\mathrm{R}_{2}-2 \mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}-2 \mathrm{R}_{6}$ |
|  | Ring deformation | $\mathrm{S}_{21}=\mathrm{R}_{1}+\mathrm{R}_{2}-\mathrm{R}_{4}-\mathrm{R}_{5}$ |
|  | Ring deformation | $\mathrm{S}_{22}=\mathrm{R}_{1}-\mathrm{R}_{2}+\mathrm{R}_{3}-\mathrm{R}_{4}+\mathrm{R}_{5}-\mathrm{R}_{6}$ |
|  | Ring deformation | $\mathrm{S}_{23}=\mathrm{R}_{1}-\mathrm{R}_{2}+\mathrm{R}_{4}-\mathrm{R}_{5}$ |
|  | Ring deformation | $\mathrm{S}_{24}=\mathrm{R}_{1}-\mathrm{R}_{2}-2 \mathrm{R}_{3}-\mathrm{R}_{4}+\mathrm{R}_{5}+2 \mathrm{R}_{6}$ |
|  | Ring deformation | $\mathrm{S}_{25}=\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}$ |
|  | Ring deformation | $\mathrm{S}_{26}=2 \alpha_{1}-\alpha_{2}-\alpha_{3}+2 \alpha_{4}-\alpha_{5}-\alpha_{6}$ |
|  | Ring deformation | $\mathrm{S}_{27}=\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}$ |
| A" | $\beta$-CH deformation | $\mathrm{S}_{28}=\lambda_{1}$ |
|  | $\beta-\mathrm{CH}$ and ring-NCN deformation | $\mathrm{S}_{29}=\lambda_{2} \cos \Phi+\eta_{2} \sin \Phi$ |
|  | $\beta-\mathrm{CH}$ and ring-NCN deformation | $\mathrm{S}_{30}=-\lambda_{2} \sin \Phi+\eta_{2} \cos \Phi$ |
|  | $\gamma-\mathrm{CCl}$ deformation | $\mathrm{S}_{31}=\lambda_{3}$ |
|  | $\gamma-\mathrm{CCl}$ and $\delta$ - CH deformation | $\mathrm{S}_{32}=\lambda_{4} \cos \Omega+\eta_{1} \sin \Omega$ |
|  | $\gamma-\mathrm{CCl}$ and $\delta$ - CH deformation | $\mathrm{S}_{33}=-\lambda_{4} \sin \Omega+\eta_{1} \cos \Omega$ |
|  | $\mathrm{N}-\mathrm{H}$ bend (out-ofplane) | $\mathrm{S}_{34}=\bar{\square}$ |
|  | Ring deformation | $\mathrm{S}_{35}=\kappa_{1}-\kappa_{2}+\kappa_{3}-\kappa_{4}+\kappa_{5}-\kappa_{6}$ |
|  | Ring deformation | $\mathrm{S}_{36}=\kappa_{1}-\kappa_{3}+\kappa_{4}-\kappa_{6}$ |
|  | Ring deformation | $\mathrm{S}_{37}=\kappa_{1}-2 \kappa_{2}+\kappa_{3}+\kappa_{4}-2 \kappa_{5}+\kappa_{6}$ |
|  | NCN bend (out-ofplane) | $\mathrm{S}_{38}=\chi$ |
|  | HNCN asymmetric torsion | $\mathrm{S}_{39}=\tau$ |

${ }^{\text {a }}$ Not normalized
${ }^{\mathrm{b}} \Phi=-15^{\circ}$ and $\Omega=+20^{\circ}$
cyanamide ( $6 \mathrm{kcal} \mathrm{mol}^{-1}$ ) is due to the difference in the bond $\pi$-character in both molecules.

Therefore, we calculated in the present work the vibrational wavenumbers of only the planar 3,5 -dichlorophenylcyanamide and plotted its vibrational infrared and Raman spectra (Figs. 3 and 4). The vibrational assignments of several fundamental vibrations of the molecule were straightforward based on the calculated PED but many were predicted to mix strongly with other modes, as shown in Table 5, especially bending modes.


Fig. 3 Calculated vibrational infrared spectrum of $\mathrm{d}_{0^{-}}$(upper), $\mathrm{d}_{1}$ - (middle) and $\mathrm{d}_{3}$ - (lower) 3,5-dichlorophenylcyanamide at 300 K by the DFT-B3LYP/6-311+G** calculation


Fig. 4 Calculated vibrational Raman spectrum of $\mathrm{d}_{0}$ - (upper), $\mathrm{d}_{1^{-}}$(middle) and $\mathrm{d}_{3}$ - (lower) 3,5-dichlorophenylcyanamide at 300 K by the DFT-B3LYP/6-311+G** calculation

There are three stretches that are associated with the $\mathrm{C}-\mathrm{H}$ modes $\left(\mathrm{S}_{2}-\mathrm{S}_{6}\right)$ of the phenyl group and one $\mathrm{N}-\mathrm{H}$ stretch $\left(\mathrm{S}_{1}\right)$ of the cyanamide group. Only the $\mathrm{N}-\mathrm{H}$ stretch was predicted to have no mixing with other vibrations ( $100 \%$ PED as given in Table 5). This mode was predicted at $3,614 \mathrm{~cm}^{-1}$ and $2,647 \mathrm{~cm}^{-1}$ in the spectra of the $\mathrm{d}_{1}$ species (Table 6). The three C-H stretches were calculated at $3,199,3,189,3,180,3,173$ and $3,157 \mathrm{~cm}^{-1}$ in

Table 5 Calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ at B3LYP/6$311+\mathrm{G}^{* *}$ level for planar 3,5dichlorophenylcyanamide

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sym.} \& \multirow[t]{2}{*}{No.} \& \multicolumn{4}{|l|}{B3LYP} \& \multirow[t]{2}{*}{PED} \\
\hline \& \& Freq. \& IR Int. \& Raman Act. \& Depol. Ratio \& \\
\hline \multirow[t]{27}{*}{A'} \& \(\nu_{1}\) \& 3614 \& 74.2 \& 112.7 \& 0.1 \& 99\% \(\mathrm{S}_{6}\) (N-H str.) \\
\hline \& \(\nu_{2}\) \& 3219 \& 1.7 \& 63.4 \& 0.3 \& \(100 \% \mathrm{~S}_{5}\) ( \(\delta\) - CH str.) \\
\hline \& \(v_{3}\) \& 3194 \& 1.7 \& 39.2 \& 0.2 \& \(51 \% \mathrm{~S}_{1}\) ( \(\beta\)-CH antisym. str.), \(49 \% \mathrm{~S}_{2}\) ( \(\beta\) - CH sym. str.) \\
\hline \& \(v_{4}\) \& 3180 \& 2.2 \& 75.5 \& 0.3 \& \[
\begin{aligned}
\& 51 \% \mathrm{~S}_{2}(\beta \text {-CH sym. str.), } \\
\& 49 \% \mathrm{~S}_{1}(\beta \text {-CH antisym. str.) }
\end{aligned}
\] \\
\hline \& \(\nu_{5}\) \& 2342 \& 230.9 \& 219.9 \& 0.3 \& \(91 \% \mathrm{~S}_{8}\) (NCN antisym. str.) \\
\hline \& \(v_{6}\) \& 1639 \& 330.5 \& 65.9 \& 0.6 \& \begin{tabular}{l}
\(63 \% \mathrm{~S}_{20}\) (ring def.), \\
\(19 \% \mathrm{~S}_{10}\) ( \(\beta\)-CH in-plane bend)
\end{tabular} \\
\hline \& \(v_{7}\) \& 1626 \& 101.5 \& 17.3 \& 0.7 \& \begin{tabular}{l}
\(66 \% \mathrm{~S}_{23}\) (ring def.), \\
\(10 \% \mathrm{~S}_{15}\) (N-H in-plane bend)
\end{tabular} \\
\hline \& \(\nu_{8}\) \& 1519 \& 93.4
83.6 \& 2.7 \& 0.3 \& \begin{tabular}{l}
\(40 \% \mathrm{~S}_{15}\) (N-H in-plane bend), \(16 \% \mathrm{~S}_{24}\) (ring def.), \\
\(13 \% \mathrm{~S}_{11}\) ( \(\beta\)-CH in-plane bend), \\
\(10 \% \mathrm{~S}_{14}\) ( \(\delta\)-CH in-plane bend)
\end{tabular} \\
\hline \& \(\nu_{9}\) \& 1462 \& 83.6 \& 2.6 \& 0.2 \& \begin{tabular}{l}
\(34 \% \mathrm{~S}_{21}\) (ring def.), \\
\(17 \% \mathrm{~S}_{10}(\beta\)-CH in-plane bend), \\
\(16 \% \mathrm{~S}_{20}\) (ring def.), \\
\(11 \% \mathrm{~S}_{7}\) (ring-N str.)
\end{tabular} \\
\hline \& \(\nu_{10}\) \& 1425 \& 37.3 \& 3.3 \& 0.6 \& \(29 \% \mathrm{~S}_{15}\) (NH in-plane bend), \(22 \% \mathrm{~S}_{24}\) (ring def.) \\
\hline \& \(v_{11}\) \& 1334 \& 15.4 \& 2.3 \& 0.1 \& \begin{tabular}{l}
\(57 \% \mathrm{~S}_{22}\) (ring def.), \\
\(21 \% \mathrm{~S}_{14}\) ( \(\delta\)-CH in-plane bend), \\
\(20 \% \mathrm{~S}_{11}\) ( \(\beta\)-CH in-plane bend)
\end{tabular} \\
\hline \& \(v_{12}\) \& 1287 \& 26.4 \& 22.7 \& 0.1 \& \begin{tabular}{l}
\(21 \% \mathrm{~S}_{7}\) (ring-N str.), \\
\(16 \% \mathrm{~S}_{11}(\beta-\mathrm{CH}\) in-plane bend), \\
\(11 \% \mathrm{~S}_{22}\) (ring def.)
\end{tabular} \\
\hline \& \(\nu_{13}\) \& 1266 \& 7.5 \& 7.5 \& 0.1 \& \begin{tabular}{l}
\(29 \% \mathrm{~S}_{22}\) (ring def.), \\
\(25 \% \mathrm{~S}_{11}(\beta\)-CH in-plane bend), \\
\(10 \% \mathrm{~S}_{7}\) (ring-N str.)
\end{tabular} \\
\hline \& \(v_{14}\) \& 1142 \& 15.7 \& 0.9 \& 0.3 \& 43\% \(\mathrm{S}_{9}\) (NCN sym. str.) \\
\hline \& \(v_{15}\) \& 1134 \& 25.6 \& 3.5 \& 0.1 \& \(38 \% \mathrm{~S}_{10}\) ( \(\beta\)-CH in-plane bend), \(37 \% \mathrm{~S}_{21}\) (ring def.) \\
\hline \& \(\nu_{16}\) \& 1119 \& 41.5 \& 0.5 \& 0.2 \& \begin{tabular}{l}
\(30 \% \mathrm{~S}_{24}\) (ring def.), \\
\(26 \% \mathrm{~S}_{14}\) ( \(\delta\)-CH in-plane bend), \\
\(15 \% \mathrm{~S}_{9}\) (NCN sym. str.)
\end{tabular} \\
\hline \& \(v_{17}\) \& 1011 \& 1.5 \& 64.2 \& 0.1 \& \begin{tabular}{l}
\(59 \% \mathrm{~S}_{25}\) (ring def.), \\
\(39 \% \mathrm{~S}_{19}\) (ring breathing)
\end{tabular} \\
\hline \& \(\nu_{18}\) \& 934 \& 47.9 \& 2.4 \& 0.6 \& \begin{tabular}{l}
\(25 \% \mathrm{~S}_{7}\) (ring-N str.), \\
\(17 \% \mathrm{~S}_{4}\) ( \(\gamma\)-CCl sym. str.), \\
\(11 \% \mathrm{~S}_{26}\) (ring def.)
\end{tabular} \\
\hline \& \(\nu_{19}\) \& 813 \& 86.9 \& 0.4 \& 0.7 \& \(53 \% \mathrm{~S}_{3}\) ( \(\gamma-\mathrm{CCl}\) antisym. str.), \(30 \% \mathrm{~S}_{27}\) (ring def.) \\
\hline \& \(v_{20}\) \& 695 \& 10.7 \& 1.3 \& 0.7 \& \begin{tabular}{l}
\(34 \% \mathrm{~S}_{18}\) (CNC in-plane bend), \\
\(20 \% \mathrm{~S}_{26}\) (ring def.), \\
\(17 \% \mathrm{~S}_{16}\) (NCN in-plane bend)
\end{tabular} \\
\hline \& \(v_{21}\) \& 466 \& 3.2 \& 0.9

0.6 \& 0.2 \& | $39 \% \mathrm{~S}_{26}$ (ring def.,) |
| :--- |
| $18 \% \mathrm{~S}_{13}$ ( $\gamma$-CCl in-plane bend), |
| $12 \% \mathrm{~S}_{7}$ (ring-N str.), |
| $11 \% \mathrm{~S}_{17}$ (ring-NCN in-plane bend) | <br>

\hline \& $v_{22}$ \& 452 \& 2.6 \& 0.6 \& 0.7 \& $35 \% \mathrm{~S}_{13}(\gamma-\mathrm{CCl}$ in-plane bend), $22 \% \mathrm{~S}_{16}$ (NCN in-plane bend), $18 \% \mathrm{~S}_{17}$ (ring-NCN in-plane bend) <br>

\hline \& $v_{23}$ \& 429 \& 3.2 \& 1.5 \& 0.7 \& | $50 \% \mathrm{~S}_{27}$ (ring def.), |
| :--- |
| $30 \% \mathrm{~S}_{3}$ ( $\gamma-\mathrm{CCl}$ antisym. str.) | <br>

\hline \& $\nu_{24}$ \& 389 \& 2.6 \& 11.5 \& 0.1

0.5 \& | $54 \% \mathrm{~S}_{4}(\gamma$-CCl sym. str.), |
| :--- |
| $18 \% \mathrm{~S}_{19}$ (ring breathing), |
| $12 \% \mathrm{~S}_{25}$ (ring def.) | <br>

\hline \& $v_{25}$ \& 247 \& 2.8 \& 7.0 \& 0.5 \& $30 \% \mathrm{~S}_{13}(\gamma-\mathrm{CCl}$ in-plane bend), $23 \% \mathrm{~S}_{16}$ (NCN in-plane bend), $15 \% \mathrm{~S}_{17}$ (ring-NCN in-plane bend), $10 \% \mathrm{~S}_{18}$ (CNC in-plane bend) <br>
\hline \& $v_{26}$ \& 189 \& 0.5 \& 1.8 \& 0.7 \& $88 \% \mathrm{~S}_{12}(\gamma-\mathrm{CCl}$ in-plane bend) <br>

\hline \& $\nu_{27}$ \& 103 \& 6.4 \& 4.2 \& 0.6 \& | $36 \% \mathrm{~S}_{18}$ (CNC in-plane bend), |
| :--- |
| $31 \% \mathrm{~S}_{17}$ (ring-NCN in-plane bend), |
| $21 \% \mathrm{~S}_{16}$ (NCN in-plane bend) | <br>

\hline
\end{tabular}

Table 5 (continued)

| Sym. | No. | B3LYP |  |  |  | PED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Freq. | IR Int. | Raman <br> Act. | Depol. <br> Ratio |  |
| A" | $v_{28}$ | 888 | 15.2 | 0.1 | 0.8 | $\begin{aligned} & 43 \% \mathrm{~S}_{28}(\beta \text {-CH def), } \\ & 34 \% \mathrm{~S}_{29}(\beta-\mathrm{CH} \text { and ring-NCN def.) } \end{aligned}$ |
|  |  |  |  |  |  |  |
|  | $\nu_{29}$ | 867 | 7.2 | 0.3 | 0.8 | $77 \% \mathrm{~S}_{32}(\gamma-\mathrm{CCl}$ and $\delta$ - CH def.), |
|  |  |  |  |  |  | $12 \% \mathrm{~S}_{28}(\beta$-CH def) |
|  | $v_{30}$ | 860 | 37.6 | 0.4 | 0.88 |  |
|  |  |  |  |  |  | $28 \% \mathrm{~S}_{29}$ ( $\beta$-CH and ring-NCN def.), $16 \% \mathrm{~S}_{35}$ (ring def.), |
|  |  |  |  |  |  | $13 \% \mathrm{~S}_{32}(\gamma-\mathrm{CCl}$ and $\delta-\mathrm{CH}$ def.) |
|  | $v_{31}$ | 686 | 14.1 | 0.2 | 0.8 | $63 \% \mathrm{~S}_{35}$ (ring def.), |
|  |  |  |  |  |  | $36 \% \mathrm{~S}_{30}(\beta-\mathrm{CH}$ and ring-NCN def.) |
|  | $v_{32}$ | 576 | 0.4 | 0.2 | 0.8 | $53 \% \mathrm{~S}_{30}(\beta-\mathrm{CH}$ and ring-NCN def.), |
|  |  |  |  |  |  | $34 \% \mathrm{~S}_{36}$ (ring def.), |
|  |  |  |  |  |  | $14 \% \mathrm{~S}_{29}(\beta-\mathrm{CH}$ and ring-NCN def.) |
|  | $v_{33}$ | 549 | 0.4 | 0.1 | 0.7 | $52 \% \mathrm{~S}_{37}$ (ring def.), |
|  |  |  |  |  |  | $39 \% \mathrm{~S}_{31}(\gamma-\mathrm{CCl}$ def.) |
|  | $v_{34}$ | 508 | 4.3 | 2.0 | 0.8 | 99\% S 38 (NCN out-of-plane bend) |
|  | $v_{35}$ | 277 | 80.0 | 0.8 | 0.8 | $75 \% \mathrm{~S}_{34}$ (N-H out-of-plane bend), $16 \% \mathrm{~S}_{39}$ (HNCN asym. torsion) |
|  | $\nu_{36}$ | 223 | 12.1 | 1.8 | 0.8 | $59 \% \mathrm{~S}_{36}$ (ring def.), |
|  |  |  |  |  |  | 20\% ( $\beta$ - CH and ring-NCN def.) |
|  | $\nu_{37}$ | 192 | 0.5 | 0.9 | 0.8 | $54 \% \mathrm{~S}_{31}(\gamma-\mathrm{CCl}$ def.), |
|  |  |  |  |  |  | 43\% S 37 (ring def.) |
|  | $v_{38}$ | 151 | 2.3 | 0.1 | 0.8 | $91 \% \mathrm{~S}_{33}(\gamma-\mathrm{CCl}$ and $\delta$-CH def.) |
|  | $\nu_{39}$ | 51 | 6.8 | 0.5 | 0.8 | $72 \% \mathrm{~S}_{39}$ (HNCN asym. torsion), $24 \% \mathrm{~S}_{34}$ (N-H out-of-plane bend) |

${ }^{\text {a }}$ IR intensities and Raman activities are calculated in $\mathrm{km} \mathrm{mol}^{-1}$ and $\mathrm{A}^{4} \mathrm{amu}^{-1}$ respectively

Table 6 Calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ at B3LYP/6-311+G** level of $\mathrm{d}_{0^{-}}$, $\mathrm{d}_{1^{-}}$and $\mathrm{d}_{3}$-3,5-dichlorophenylcyanamide

| Sym. | No. | Wavenumbers |  |  | Assignments ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | c- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$ - NHCN | c- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$ - NDCN | $\mathrm{c}-\mathrm{C}_{6} \mathrm{D}_{3} \mathrm{Cl}_{2}-\mathrm{NHCN}$ |  |
| $A^{\prime}$ | $\nu_{1}$ | 3614 | 2646 | 3613 | N-H stretch |
|  | $v_{2}$ | 3219 | 3219 | 2381 | $\gamma$-CH symmetric |
|  | $v_{3}$ | 3194 | 3194 | 2362 | $\beta-\mathrm{CH}$ antisymmetric and symmetric stretches |
|  | $v_{4}$ | 3180 | 3179 | 2351 | $\beta$-CH symmetric, $\delta$-CH and $\gamma$-CH antisymmetric stretches |
|  | $v_{5}$ | 2342 | 2342 | 2343 | NCN antisymmetric stretch |
|  | $v_{6}$ | 1639 | 1639 | 1615 | Ring deformation |
|  | $v_{7}$ | 1626 | 1616 | 1610 | Ring deformation |
|  | $\nu_{8}$ | 1519 | 1478 | 1493 | $N-H$ in-plane bend |
|  | $v_{9}$ | 1462 | 1350 | 1406 | Ring deformation |
|  | $\nu_{10}$ | 1425 | 1528 | 1367 | $N-H$ in-plane bend and ring deformation |
|  | $v_{11}$ | 1334 | 1333 | 1313 | Ring deformation |
|  | $v_{12}$ | 1287 | 1278 | 1249 | Ring-N stretch |
|  | $v_{13}$ | 1266 | 1174 | 1136 | Ring deformation and $\beta$-CH in-plane bend |
|  | $v_{14}$ | 1142 | 1134 | 1000 | NCN symmetric stretch |
|  | $\nu_{15}$ | 1134 | 1204 | 970 | $\beta-\mathrm{CH}$ in-plane bend and ring deformation |
|  | $\nu_{16}$ | 1119 | 1123 | 934 | Ring deformation and $\delta$ - CH in-plane bend |
|  | $v_{17}$ | 1011 | 1015 | 855 | Ring deformation and ring breathing |
|  | $\nu_{18}$ | 934 | 913 | 852 | Ring- $N$ stretch and $\gamma-\mathrm{C}-\mathrm{Cl}$ symmetric stretch |
|  | $\nu_{19}$ | 813 | 812 | 682 | $\gamma-\mathrm{C}-\mathrm{Cl}$ antisymmetric stretch and ring deformation |
|  | $\nu_{20}$ | 695 | 681 | 452 | CNC in-plane bend and ring deformation |
|  | $\nu_{21}$ | 466 | 462 | 431 | Ring deformation and $\gamma-\mathrm{C}-\mathrm{Cl}$ in-plane bend |
|  | $v_{22}$ | 452 | 449 | 452 | $\gamma-\mathrm{C-Cl}$ and NCN in-plane bends |
|  | $\nu_{23}$ | 429 | 428 | 419 | Ring deformation and $\gamma-\mathrm{C}-\mathrm{Cl}$ antisymmetric stretch |
|  | $\nu_{24}$ | 389 | 389 | 388 | $\gamma-\mathrm{C}-\mathrm{Cl}$ symmetric stretch |
|  | $\nu_{25}$ | 247 | 245 | 246 | $\gamma-\mathrm{C}-\mathrm{Cl}$ in-plane bend and NCN in-plane bend |
|  | $\nu_{26}$ | 189 | 189 | 189 | $\gamma-\mathrm{C}-\mathrm{Cl}$ in-plane bend |
|  | $\nu_{27}$ | 103 | 103 | 103 | CNC and ring-NCN in-plane bends |
| A" | $\nu_{28}$ | 888 | 888 | 804 | $\beta-\mathrm{CH}$ and ( $\beta$-CH and ring-NCN) deformations |
|  | $\nu_{29}$ | 867 | 867 | 791 | ( $\gamma-\mathrm{CCl}$ and $\delta$ - CH deformation) |
|  | $\nu_{30}$ | 860 | 860 | 728 | $\beta-\mathrm{CH}$ and ( $\beta-\mathrm{CH}$ and ring-NCN) deformations |
|  | $v_{31}$ | 686 | 686 | 715 | Ring deformation |
|  | $v_{32}$ | 576 | 576 | 543 | ( $\beta$-CH and ring-NCN deformation) and ring deformation |
|  | $v_{33}$ | 549 | 548 | 531 | Ring and $\gamma-\mathrm{C}-\mathrm{Cl}$ deformations |
|  | $v_{34}$ | 508 | 506 | 503 | NCN out-of-plane bend |
|  | $\nu_{35}$ | 277 | 239 | 276 | N-H out-of-plane bend |
|  | $\nu_{36}$ | 223 | 196 | 209 | Ring deformation |
|  | $v_{37}$ | 192 | 188 | 179 | $\gamma-\mathrm{C}-\mathrm{Cl}$ and ring deformations |
|  | $\nu_{38}$ | 151 | 147 | 149 | ( $\gamma-\mathrm{CCl}$ and $\delta$ - CH deformation) |
|  | $\nu_{39}$ | 50 | 50 | 50 | HNCN asymmetric torsion |

[^3]the spectrum of the $\mathrm{d}_{0}$ species and at $2,372,2,361,2,350$, 2,341 and $2,330 \mathrm{~cm}^{-1}$ in the spectrum of the $\mathrm{d}_{3}$ dichloride (Tables 5 and 6).

The antisymmetric NCN stretch with high infrared intensity and Raman activity could be assigned with confidence to the calculated wavenumber at $2,337 \mathrm{~cm}^{-1}$ $\left(91 \% \mathrm{~S}_{8}\right)$ in the spectrum of 3,5-dichlorophenylcyanamide. This was not the case for the assignments of the corresponding symmetric stretch $\left(\mathrm{S}_{9}\right)$, two $\mathrm{C}-\mathrm{Cl}\left(\mathrm{S}_{3}\right.$ and $\left.\mathrm{S}_{4}\right)$ stretches, the ring-N stretch $\left(\mathrm{S}_{7}\right)$ and the ring breathing ( $\mathrm{S}_{19}$ ) modes, which were all predicted to couple strongly with other vibrations, as shown in Table 5. However, the ring breathing is very characteristic and has the highest Raman activity below $1,200 \mathrm{~cm}^{-1}$ in the Raman spectra of cyclic compounds. Therefore, this mode could be assigned to the calculated wavenumber at $1,014 \mathrm{~cm}^{-1}$ (Table 5). The two $\mathrm{C}-\mathrm{Cl}$ stretches were predicted to have PED value of about $53 \%$ (Table 5).

Similarly, many of the skeletal modes associated with bendings of the heavy atoms were calculated to mix considerably with other vibrations and hence they could not be assigned clearly. The lowest HNCN torsional mode in the spectrum of 3,5-dichlorophenylcyanamide was calculated at $57 \mathrm{~cm}^{-1}$ with a PED value of $74 \% \mathrm{~S}_{21}$.

In conclusion, we optimized the structure of 3,5dichlorophenylcyanamide at DFT-B3LYP/6-311+G** and MP2/6-311+G** levels to include diffuse and polarization functions in the calculations. The calculated $\mathrm{C}-\mathrm{N}$ rotational barrier of about $5 \mathrm{kcal} \mathrm{mol}^{-1}$ in 3,5dichlorophenylcyanamide supports the stability of the molecule in the planar conformation as a result of pronounced conjugation between the cyanamide and the phenyl groups. We carried out normal coordinate analyses for such relatively large molecule. We then calculated the PEDs among the symmetry coordinates of the normal modes of the molecule and provided reliable vibrational assignments on the basis of the calculated PED values and isotopic substitution.

Acknowledgement The authors gratefully acknowledge the support of this work by King Fahd University of Petroleum and Minerals.

## References

1. Tyler JK, Shridan J, Costian CC (1972) J Mol Spectrosc 43:248-261
2. Brown RD, Godfrey PD, Kleibomer B (1985) J Mol Spectrosc 114:257-273
3. Birk M, Winnewisser M J (1993) Mol Spectrosc 159:69-78
4. Cacace F, de Petris G, Grandinetti F, Occhiucci G (1993) J Phys Chem 97:4239-4245
5. Kapellos ST, Mavridis A (1993) J Mol Struct (Theochem) 279:151-156
6. Badawi HM (2002) J Mol Struct (Theochem) 584:201-210
7. Badawi HM, Förner W, Al-Saadi A (2001) J Mol Struct (Theochem) 535:183-197
8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, Pa.
9. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York
10. Förner W, Badawi HM (2001) J Mol Model 7:288-305
11. Chantry GW (1971) In: Anderson A (ed) The Raman effect, vol 1. Marcel Dekker, New York, Chapter 2
12. Buchanan GW, Crutchley RJ (1994) Magn Res Chem 32:552553
13. Crutchley RJ, Mckaw K, Lee FL, Gabe EJ (1990) Inorg Chem 29:2576-2582
14. Aquino MAS, Lee FL, Gabe EJ, Bensimon C, Greedan JE, Crutchley RJ (1992) J Am Chem Soc 114:5130-5137
15. Aquino MAS, Lee FL, Gabe EJ, Bensimon C, Crutchley RJ (1993) Acta Crystallogr Sect C 49:1543-1551
16. Ainscough EW, Brodie AM, Healy PC, Waters JM (2000) Aus J Chem 53:971-973
17. Mosher PJ, Yap GPA, Crutchley RJ (2001) Inorg Chem 40:550-553
18. Sondaz E, Gourdon A, Launay JP, Bonvoisin J (2001) Inorg Chim Acta 316:79-88
19. Crutchley RJ (2001 Coord Chem Rev 219:125-155
20. Rezvani AR, Hadadzadeh H, Patrick B (2002) Inorg Chim Acta 336:125-130
21. Escuer A, Sanz N, Vicente R, Mautner FA (2003) Inorg Chem 42:541-551

[^0]:    H. M. Badawi ( ) W. Förner

    Department of Chemistry,
    King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
    e-mail: hbadawi@kfupm.edu.sa

[^1]:    ${ }^{\mathrm{a}} \varphi$ is the CCNC dihedral angle

[^2]:    ${ }^{\text {a }}$ For atom denotation see Fig. 1

[^3]:    ${ }^{\text {a }}$ Italic denotes vibrational modes with PED values lower than $45 \%$ in Table 5

